Solvent-Free Synthesis of Diphenyl [2-(Aminocarbonyl)-1,2dihydroisoquinolin-1-yl]phosphonates from Isoquinoline, Isocyanates, and Diphenyl Phosphonate

by Issa Yavari*, Anvar Mirzaei, and Gholamhossein Khalili

Chemistry Department, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran (phone: +98-21-82883465; fax: +98-21-82883455; e-mail: yavarisa@modares.ac.ir)

The 1:1 intermediates generated by addition of isoquinoline to isocyanates were trapped by diphenyl phosphonate to yield diphenyl [2-(aminocarbonyl)-1,2-dihydroisoquinolin-1-yl]phosphonates in good yields under solvent-free conditions.

Introduction. – Phosphonate-containing molecules are an important class of active compounds, and their use and synthesis have received attention during the last two decades [1-4]. Among these, α -aminophosphonates are key compounds as analogues of α -amino acids in medicinal chemistry and pharmaceutical industries [5].

As part of our current studies on the synthesis of alkylphosphonates [6-8], we report the results of our studies involving the reactions of zwitterions derived from isoquinoline, isocyanates, and diphenyl phosphonate, which constitute a synthesis of diphenyl α -aminophosphonates **4**.

Results and Discussion. – The reaction of isoquinoline (1), isocyanate (or isothiocyanate) **2**, and diphenyl phosphonate (**3**) proceeded smoothly and was complete within 4-10 min. The ¹H- and ¹³C-NMR spectra of the crude products clearly indicated the formation of diphenyl [2-(aminocarbonyl)- or [2-(aminothioxomethyl)-1,2-dihydroisoquinolin-1-yl]phosphonates **4** in 96–99% yield (*Scheme 1* and *Table*).

The structures of compounds **4a**-**4f** were deduced from their IR and ¹H- and ¹³C-NMR spectra. For example, the ¹H-NMR spectrum of **4a** exhibited olefinic (δ (H) 5.47 and 6.80), CH (δ (H) 6.30), and NH (δ (H) 7.92) H-atoms, along with *ms* for the aromatic H-atoms. The ¹H-decoupled ¹³C-NMR spectrum of **4a** showed 22 distinct

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Table.	Reaction of Isoquinoline (1) with Isocyanates 2a-2e, 2g, and 2h or with Isothiocyanate 2f in the					
Presence of Diphenyl Phosphonate (3) under Solvent-Free Conditions						

Entry	R-N=C=X	Product		Time [min]	Yield [%]
1	Ph-N=C=O(2a)	$(PhO)_2P \geq_O O$	4 a	10	98
2	3-Cl-4-Me-C ₆ H ₃ -N=C=O (2b)	$(PhO)_2P \geq_0 O$	4b	4	99
3	cHex-N=C=O (2c)	(PhO) ₂ P _{<0} 0	4c	7	97
4	Bu-N=C=O (2d)	$(PhO)_2P \ge O O$	4d	8	97
5	Et-N=C=O (2e)	$(PhO)_2P \geq_O O$	4 e	10	97
6	Ph-N=C=S(2f)	(PhO) ₂ P<0 S	4f	6	96
7 8	$\begin{array}{l} \text{4-NO}_2 - C_6 H_4 - \text{N} = \text{C} = \text{O} \ (\textbf{2g}) \\ \text{4-Cl} - C_6 H_4 - \text{N} = \text{C} = \text{O} \ (\textbf{2h}) \end{array}$	no reaction no reaction	_	-	

resonances that confirmed the proposed structure. The IR spectrum of **4a** displayed characteristic NH, amide C=O, and P=O bands. The ¹H- and ¹³C-NMR spectra of **4b** – **4f** were similar to those of **4a**, except for the amide moieties, which exhibited characteristic resonances in appropriate regions of the spectrum.

Although the mechanistic details of the reaction are not known, a plausible rationalization may be advanced to explain the product formation. Presumably, the zwitterionic intermediate 5 [9][10], formed from 1 and 2, is protonated by 3 to furnish intermediate 6, which is attacked by 7 to produce 4 (*Scheme 2*).

In summary, we report a 'green' synthesis of diphenyl [2-(aminocarbonyl)- or [2-(aminothioxomethyl)-1,2-dihydroisoquinolin-1-yl]phosphonates in good yields under

solvent-free conditions. The present procedure has the advantage that the reaction takes place under noncatalytic conditions, and that the reactants can be mixed without any prior activation or modification.

Experimental Part

General. Compounds 1–3 were obtained from *Merck* and used without further purification. M.p.: *Electrothermal-9100* apparatus; uncorrected. IR Spectra: *Shimadzu-IR-460* spectrometer; $\tilde{\nu}$ in cm⁻¹. ¹H-, ¹³C-, and ³¹P-NMR Spectra: *Bruker-DRX-500-Avance* instrument; in CDCl₃ at 500.1, 125.7, and 202 MHz, resp.; δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. MS: *Finnigan-MAT-8430* mass spectrometer at 70 eV; in *m/z* (rel. %). Elemental analyses: *Heraeus-CHN-O-Rapid* analyzer.

Compounds **4**: *General Procedure.* To a stirred mixture of **3** (0.47 g, 2 mmol) and heterocumulene **2** (2 mmol) was added isoquinoline (**1**; 0.26 g, 2 mmol) at r.t. After a short time (4-10 min), solidification occurred, and the solid was washed with cold MeCN (10 ml) to afford the pure desired products.

Diphenyl 1,2-Dihydro-[2-[(phenylamino)carbonyl]isoquinolin-1-yl]phosphonate (**4a**): Yield 0.47 g (98%). White powder. M.p. 148–150°. IR (KBr): 3295 (NH), 3035, 1658 (C=O), 1618, 1585, 1475, 1235 (P=O), 1205, 927, 740. ¹H-NMR: 5.47 (d, ³J(H,H) = 7.3, CH); 6.30 (d, ²J(P,H) = 13.4, CH); 6.80 (d, ³J(H,H) = 7.3, CH); 6.92 (d, ³J(H,H) = 7.7, 2 CH); 7.00 (d, ³J(H,H) = 7.7, 2 CH); 7.03–7.12 (m, 4 CH); 7.18–7.26 (m, 9 CH); 7.34 (d, ³J(H,H) = 7.5, 2 CH); 7.92 (br. *s*, NH). ¹³C-NMR: 55.2 (d, ¹J(P,C) = 156.6, CH–P); 110.5 (CH); 120.0 (d, ³J(C,P) = 2.6, 2 CH); 120.1 (d, ³J(C,P) = 2.6, 2 CH); 123.5 (2 CH); 124.0 (C); 124.8 (CH); 125.0 (d, ³J(C,P) = 2.9, CH); 125.1 (2 CH); 125.2 (C); 127.2 (CH); 127.3 (CH); 127.4 (C); 128.7 (CH); 128.9 (CH); 129.0 (CH); 129.4 (2 CH); 129.6 (2 CH); 131.4 (d, ³J(C,P) = 3.3, CH); 150.1 (d, ²J(C,P) = 10.5, C); 150.2 (d, ²J(C,P) = 10.5, C); 152.3 (C=O). ³¹P-NMR: 11.1. EI-MS: 482 (2, M^+), 234 (20), 170 (10), 130 (50), 129 (100), 119 (52), 94 (95), 92 (40), 77 (42), 65 (48), 51 (51), 39 (80). Anal. calc. for C₂₈H₂₃N₂O₄P (482.47): C 69.71, H 4.80, N 5.81; found: C 69.80, H 4.75, N 5.72.

Diphenyl [2-[[(3-Chloro-4-methylphenyl)amino]carbonyl]-1,2-dihydroisoquinolin-1-yl]phosphonate (**4b**): Yield 0.52 g (99%). White powder. M.p. 157–159°. IR (KBr): 3285 (NH), 3000, 1654 (C=O), 1620, 1578, 1506, 1480, 1208 (P=O), 932, 756. ¹H-NMR: 2.31 (*s*, Me); 5.94 (*d*, ³*J*(H,H)=7.5, CH); 6.27 (*d*, ²*J*(P,H)=12.9, CH); 6.79 (*d*, ³*J*(H,H)=7.6, CH); 6.92 (*d*, ³*J*(H,H)=8.4, 2 CH); 7.02 (*d*, ³*J*(H,H)=8.0, 2 CH); 7.09–7.15 (*m*, 4 CH); 7.20–7.31 (*m*, 8 CH); 7.42 (*s*, 1 CH); 7.96 (br. *s*, NH). ¹³C-NMR: 28.4 (Me); 47.5 (*d*, ¹*J*(P,C)=160.5, CH–P); 110.8 (CH); 118.5 (CH); 120.2 (*d*, ³*J*(C,P)=4.0, 2 CH); 120.8 (*d*, ³*J*(C,P)=2.0, 2 CH); 129.2 (CH); 125.0 (CH); 125.1 (CH); 125.2 (CH); 125.3 (CH); 127.5 (C); 128.0 (*d*, ²*J*(C,P)=2, C); 129.2 (CH); 129.6 (2 CH); 129.8 (CH); 130.9 (2 CH); 131.2 (CH); 131.5 (C); 134.4 (C); 135.2 (C); 137.2 (CH); 150.1 (*d*, ²*J*(C,P)=11, C); 150.2 (C); 152.4 (C=O). ³¹P-NMR: 11.6. EI-MS: 530 (1, *M*⁺), 234 (22), 170 (12), 167 (52), 140 (38), 130 (51), 129 (100), 113 (47), 94 (92), 77 (44), 51 (50), 39 (75). Anal. calc. for C₂₉H₂₄ClN₂O₄P (530.95): C 65.60, H 4.56, N 5.28; found: C 65.52, H 4.61, N, 5.35.

Diphenyl [2-[(Cyclohexylamino)carbonyl]-1,2-dihydroisoquinolin-1-yl]phosphonate (4c): Yield 0.47 g (97%). White powder. M.p. 143–145°. IR (KBr): 3330 (NH), 2910, 1661 (C=O), 1619, 1583, 1478, 1248 (P=O), 1211, 945, 764. ¹H-NMR: 1.20 (m, 3 CH); 1.39 (m, 2 CH); 1.61–1.70 (m, 3 CH); 1.95 (m, 2 CH); 3.72 (m, CH–N); 5.35 (br. s, NH); 5.92 (d, ³J(H,H) = 5.7, CH); 6.30 (d, ²J(P,H) = 15.0, CH); 6.71 (d, ³J(H,H) = 7.4, CH); 6.98–7.01 (m, 4 CH); 7.09 (d, ³J(H,H) = 7.5, CH); 7.11–7.16 (m, 2 CH);

7.24 – 7.29 (*m*, 5 CH); 7.32 – 7.34 (*m*, 2 CH). ¹³C-NMR: 24.8 (CH₂); 24.9 (CH₂); 25.6 (CH₂); 33.3 (CH₂); 33.5 (CH₂); 50.0 (CH–N); 54.9 (*d*, ¹*J*(P,C) = 155.0, C–P); 110.0 (CH); 120.2 (*d*, ³*J*(C,P) = 3.8, 2 CH); 120.4 (*d*, ³*J*(C,P) = 3.8, 2 CH); 125.0 (*d*, ³*J*(C,P) = 2.5, CH); 125.1 (CH); 125.2 (CH); 127.3 (CH); 127.9 (*d*, ³*J*(C,P) = 5.0, C); 128.9 (*d*, ³*J*(C,P) = 2.5, CH); 129.0 (C); 129.5 (2 CH); 129.6 (2 CH); 131.9 (*d*, ³*J*(C,P) = 3.8, CH); 150.3 (*d*, ²*J*(C,P) = 10.0, C); 150.4 (*d*, ²*J*(C,P) = 11.3, C); 153.7 (C=O). ³¹P-NMR: 11.4. EI-MS: 488 (2, M^+), 234 (18), 170 (11), 130 (52), 129 (100), 125 (48), 98 (37), 94 (89), 77 (40), 71 (45), 51 (46), 39 (71). Anal. calc. for C₂₈H₂₉N₂O₄P (488.52): C 68.84, H 5.98, N 5.73; found: C 68.70, H 5.90, N 5.67.

Diphenyl [2-[(Butylamino)carbonyl]-1,2-dihydroisoquinolin-1-yl]phosphonate (4d): Yield 0.50 g (97%). White powder. M.p. 133–135°. IR (KBr): 3350 (NH), 2925, 1641 (C=O), 1615, 1523, 1478, 1243 (P=O), 1207, 920, 755. ¹H-NMR: 0.95 (t, ³J(H,H) = 70, Me); 1.39 (m, CH₂); 1.52 (m, CH₂); 3.32 (t, ³J(H,H) = 7.1, CH₂N); 5.45 (br. s, NH); 5.94 (d, ³J(H,H) = 5.0, CH); 5.27 (d, ²J(P,H) = 15.0, CH); 6.71 (d, ³J(H,H) = 7.5, CH); 6.97 (d, ³J(H,H) = 7.6, 2 CH); 7.02 (d, ³J(H,H) = 7.6, 2 CH); 7.09–7.15 (m, 3 CH); 7.24–7.33 (m, 7 CH). ¹³C-NMR: 13.7 (Me); 20.1 (CH₂); 32.0 (CH); 42.8 (CH₂N); 55.1 (d, ¹J(P,C) = 153.8, C–P); 110.0 (CH); 120.2 (d, ³J(C,P) = 5.0, 2 CH); 120.4 (d, ³J(C,P) = 3.8, 2 CH); 124.6 (C); 125.0 (d, ³J(C,P) = 2.4, CH); 125.1 (CH); 127.3 (CH); 127.4 (CH); 127.9 (d, ³J(C,P) = 5.0, C); 128.9 (CH); 129.0 (CH); 129.5 (2 CH); 129.6 (2 CH); 131.8 (d, ³J(C,P) = 3.8, CH); 150.3 (d, ²J(C,P) = 10.0, C); 150.4 (d, ²J(C,P) = 11.3, C); 154.6 (C=O). ³¹P-NMR: 12.3. EI-MS: 462 (1, M^+), 234 (19), 170 (13), 130 (48), 129 (100), 99 (48), 94 (87), 77 (40), 72 (30), 57 (10), 51 (46), 45 (46), 39 (71). Anal. calc. for C₂₆H₂₇N₂O₄P (462.48): C 67.52, H 5.88, N 6.06; found: C 67.39, H 5.78, N 6.10.

Diphenyl [2-[(Ethylamino)carbonyl]-1,2-dihydroisoquinolin-1-yl]phosphonate (4e): Yield 0.42 g (97%). White powder. M.p. 123–125°. IR (KBr): 3345 (NH), 3025, 1620 (C=O), 1619, 1582, 1468, 1293 (P=O), 1210, 915, 763. ¹H-NMR: 1.61 (t, ³J(H,H) = 7.2, Me); 3.33 (m, CH₂N); 5.44 (²J(P,H) = 28.0, CH); 5.92 (br. d, CH); 6.28 (br. s, NH); 6.68 (d, ³J(H,H) = 7.5, CH); 6.95 (d, ³J(H,H) = 8.0, 2 CH); 6.98 (d, ³J(H,H) = 7.9, 2 CH); 7.06–7.11 (m, 3 CH); 7.21–7.29 (m, 7 CH). ¹³C-NMR: 15.2 (Me); 36.1 (CH₂N); 54.9 (d, ¹J(P,C) = 155.1, C–P); 110.2 (CH); 120.2 (d, ³J(C,P) = 4.3, 2 CH); 120.4 (d, ³J(C,P) = 4.3, 2 CH); 124.6 (C); 124.8 (d, ³J(C,P) = 3.0, CH); 124.9 (CH); 125.0 (CH); 127.3 (d, ⁴J(C,P) = 2.5, CH); 127.9 (d, ³J(C,P) = 5.8, C); 128.9 (CH); 129.0 (CH); 129.5 (2 CH); 129.6 (2 CH); 131.8 (d, ³J(C,P) = 3.3, CH); 150.3 (d, ²J(C,P) = 10.5, C); 150.5 (d, ²J(C,P) = 10.6, C); 154.5 (C=O). ³¹P-NMR: 13.1. EI-MS: 434 (2, M^+), 234 (18), 170 (14), 130 (46), 129 (100), 71 (49), 94 (88), 73 (30), 44 (15), 44 (30), 39 (71). Anal. calc. for C₂₄H₂₃N₂O₄P (434.43): C 66.35, H 5.34, N 6.45; found: C 66.22, H 5.29, N 6.36.

Diphenyl 1,2-*Dihydro-2-[(phenylamino)thioxomethyl]isoquinolin-1-yl]phosphonate* (**4f**): Yield 0.48 g (96%). White powder. M.p. 152–154°. IR (KBr): 3344 (NH), 3015, 1582, 1479, 1253 (P=O), 1208, 933, 764. ¹H-NMR: 4.94 (d, ²*J*(P,H) = 17.4, CH); 6.88 (d, ³*J*(H,H) = 7.8, 2 CH); 7.05 (t, ³*J*(H,H) = 7.4, CH); 7.10–7.18 (m, 6 CH); 6.19–6.23 (m, 5 CH); 7.25–7.28 (m, 6 CH); 7.56 (d, ³*J*(H,H) = 7.19, CH); 7.92 (br. *s*, NH). ¹³C-NMR: 54.1 (d, ¹*J*(P,C) = 128.5, C–P); 120.4 (d, ³*J*(P,C) = 4.0, 2 CH); 120.5 (CH); 120.6 (d, ³*J*(C,P) = 4.1, 2 CH); 120.7 (2 CH); 120.7 (CH); 125.1 (CH); 125.3 (2 CH); 126.4 (C); 126.5 (d, ³*J*(C,P) = 3.4, CH); 127.9 (d, ⁴*J*(C,P) = 3, CH); 128.1 (C); 128.6 (d, ³*J*(C,P) = 3.9, CH); 129.5 (CH); 129.6 (CH); 129.7 (2 CH); 129.8 (2 CH); 133.6 (d, ³*J*(C,P) = 6.8, CH); 133.7 (d, ³*J*(C,P) = 6.7, C); 150.2 (d, ²*J*(C,P) = 10.2, C); 150.3 (C=S); 150.4 (d, ²*J*(C,P) = 10.5, C). ³¹P-NMR: 12.5. EI-MS: 498 (2, *M*⁺), 234 (23), 186 (11), 130 (50), 129 (100), 135 (50), 94 (85), 92 (38), 77 (40), 65 (44), 51 (38), 39 (65). Anal. calc. for C₂₈H₂₃N₂O₃PS (498.53): C 67.46, H 4.65, N 5.62; found: C 67.20, H 4.55, N 5.55.

REFERENCES

- [1] B. A. Arbusow, Pure Appl. Chem. 1964, 9, 307.
- [2] S. C. Fields, Tetrahedron 1999, 55, 12237.
- [3] R. Hildebrand, 'The Role of Phosphonates in Living Systems', CRC Press, Boca Raton, 1983.
- [4] R. Engel, J. I. Cohen, in 'Synthesis of Carbon-Phosphorus Bonds', 2nd edn., CRC Press, 2003.
- [5] S. Kobayashi, H. Kiyohara, Y. Nakamura, R. Matsubara, J. Am. Chem. Soc. 2004, 126, 6558.
- [6] I. Yavari, Z. Hossaini, A. Alizadeh, Monatsh. Chem. 2006, 137, 1083.
- [7] A. Alizadeh, I. Yavari, Mendeleev Commun. 2005, 15, 154.

- [8] I. Yavari, M. H. Mosslemin, A. R. Montahaei, *J. Chem. Res., Synop.* 1998, 576.
 [9] R. Huisgen, M. Morikawa, K. Herbig, E. Brunn, *Chem. Ber.* 1967, *100*, 1094.
 [10] H. J. Dillinger, G. Fengler, D. Schumann, E. Winterfeldt, *Tetrahedron* 1974, *30*, 2561.

Received June 29, 2009